Phosphorylated CtIP functions as a co-factor of the MRE11-RAD50-NBS1 endonuclease in DNA end resection


Professor Petr Cejka, Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland

Date & Time:

Thursday, 8 December 2016, 14:00

MRC Weatherall Institute of Molecular Medicine, Seminar Room, Headington OX3 9DS
WIMM Occasional Seminars

To repair a DNA double-strand break (DSB) by homologous recombination (HR), the 5'-terminated strand of the DSB must be resected. The human MRE11-RAD50-NBS1 (MRN) and CtIP proteins were implicated in the initiation of DNA end resection, but the underlying mechanism remained undefined. Here we show that CtIP is a co-factor of the MRE11 endonuclease activity within the MRN complex. This function is absolutely dependent on CtIP phosphorylation that includes the key cyclin-dependent kinase target motif at Thr-847. Unlike in yeast where the Xrs2/NBS1 subunit is dispensable in vitro, NBS1 is absolutely required in the human system. The MRE11 endonuclease in conjunction with RAD50, NBS1 and phosphorylated CtIP preferentially cleaves 5'-terminated DNA strands near DSBs. Our results define the initial step of HR that is particularly relevant for the processing of DSBs bearing protein blocks or secondary DNA structures.

About Us
We aim to enhance clinical and basic cancer research in Oxford with the ultimate goal of increasing cancer cure rates.
In Oxford, we have a great wealth of broad-ranging expertise and a powerful network of cancer researchers.
Study With Us
Our graduate training programmes for both scientists and clinicians are internationally recognised.